Cognome - Nome - matricola:

PRIMO Compitino di Fisica Matematica due

Corso di Laurea Triennale in Matematica - 18 maggio 2012 sottolineare: [vecchio ordinamento 509] [nuovo ordinamento 270]

Avvertenza: Questo testo va riconsegnato, con cognome e nome sopra scritto, assieme al foglio (protocollo a 4 facciate) su cui è svolto il compito.

CONSEGNATE UN'UNICA VERSIONE DEL COMPITO (NIENTE BRUTTE COPIE)

Esercizio

Una lamina rettangolare con lati a>b omogenea e di massa m è vincolata nel piano Oxy del sistema di rif. non-inerziale Oxyz che ruota uniformemente con velocità angolare di trascinamento $\Omega=\Omega\,\hat{y}$. Il baricentro G della lamina è vincolato su di una guida circolare di raggio R centrata in O del piano Oxy. Si considerino quali coordinate Lagrangiane l'ascissa x del baricentro G della lamina e l'angolo orientato antiorario ϑ dalla semiretta positiva x al lato di lunghezza maggiore a. S'intende studiare il sistema meccanico solo per $y_G<0$. Si consideri un sistema principale d'inerzia GXYZ associato alla lamina con X parallelo a b, Y parallelo ad a e Z parallelo a z.

Determinare tutti gli equilibri al variare di $\Omega > 0$; studiarne la stabilità, al variare di $\Omega > 0$, solo per gli equilibri in cui vale x = 0.

Determinare le pulsazioni di Piccola Oscillazione attorno ad un equilibrio stabile.

Teoria

• Sia $f: \mathbb{R}^m \to \mathbb{R}$ una funzione C^{∞} con $\nabla f(0) = 0$ e $\nabla^2 f(0)$: def. pos. 1] Si consideri il sistema dinamico (del **primo** ordine in \mathbb{R}^m):

$$\dot{x} = -\nabla f(x)$$

La configurazione x=0 è d'equilibrio? è stabile? è vero che è pure asintoticamente stabile? determinare una funzione di Lyapunov. Motivare in dettaglio.

2] Si consideri il sistema dinamico (del **secondo** ordine in \mathbb{R}^m):

$$\ddot{x} = -\nabla f(x)$$

La configurazione x=0 è d'equilibrio? è stabile? è anche asintoticamente stabile? determinare una funzione di Lyapunov. Motivare in dettaglio.

• Teorema di Conservazione dell'Energia: Enunciato e dimostrazione.

Soluzione (traccia):

Teoria

1) x=0 è p.to attrattivo, equilibrio stabile iperbolico dal fatto che gli autov. di $-\nabla^2 f(0)$ sono tutti strettamente negativi. La derivata di Lie di f, $L_{-\nabla f}f=-|\nabla f|^2<0$ per $x\neq 0$, e dunque W(x)=f(x)-f(0) è funzione di Lyapunov per la stab. asintotica: f è locamente def. positiva e la sua derivata di Lie è definita negativa, localmente e strettamente.

2) È un sistema meccanico conservativo: al primo ordine è

$$\begin{cases} \dot{x} = v \\ \dot{v} = -\nabla f(x) \end{cases}$$

x=0 per v=0 è un equilibrio stabile, semplicemente stabile, e la funzione di Lyapunov è $W(x,v)=\frac{1}{2}|v|^2+f(x)-f(0)$; non è iperbolico, in generale sono dei centri.

Esercizio

Prendiamo un sistema principale d'inerzia associato alla lamina G, X, Y, Z con X parallelo a b, Y parallelo a a e Z parallelo a z. In tale base l'op. d'inerzia è

$$\mathcal{I}_G = \begin{pmatrix} \frac{ma^2}{12} & 0 & 0\\ 0 & \frac{mb^2}{12} & 0\\ 0 & 0 & \frac{m(a^2+b^2)}{12} \end{pmatrix}$$
$$\mathcal{U}^g(x,\vartheta) = -mg\sqrt{R^2 - x^2}$$

Nella base G, X, Y, Z il versore indicante la direzione dell'asse di rotazione y è

$$n(\vartheta) = \begin{pmatrix} -\cos\vartheta \\ \sin\vartheta \\ 0 \end{pmatrix}$$

$$\mathcal{U}^{centrif}(x,\vartheta) = -\frac{\Omega^2}{2} \left(mx^2 + \langle n(\vartheta), \mathcal{I}_G n(\vartheta) \rangle \right) = -\frac{\Omega^2}{2} \left(mx^2 + \frac{m}{12} \left(a^2 \cos^2 \vartheta + b^2 \sin^2 \vartheta \right) \right)$$

Le forze di Coriolis producono delle componenti Lagr. di Sollecitazione nulle dato che si tratta di valutare il lavoro e sommare contributi, p.to materiale per p.to materiale della lamina, che è sempre prodotto scalare di vettori complanari.

$$T(x, \vartheta, \dot{x}, \dot{\vartheta}) = \frac{1}{2}m \left[\dot{x}^2 + \left(\frac{x\dot{x}}{\sqrt{R^2 - x^2}} \right)^2 \right] + \frac{1}{2}\frac{m}{12}(a^2 + b^2)\dot{\vartheta}^2$$

$$0 = \mathcal{U}_{,x}^{tot} = -mx\left(-\frac{g}{\sqrt{R^2 - x^2}} + \Omega^2 \right)$$

$$0 = \mathcal{U}_{,\vartheta}^{tot} = \frac{m\Omega^2}{12}(a^2 - b^2)\sin\vartheta\cos\vartheta$$

Se Ω è piccolo, cio
è $\Omega^2<\frac{g}{R}$, esiste la sola soluzione $x_E=0$ della prima equ
. e la seconda dà $\vartheta_E=0,\frac{\pi}{2},\pi,\frac{3}{2}\pi$. Lo studio dell'Hessiana

$$\nabla^2 \mathcal{U}^{tot}(x,\vartheta) = \begin{pmatrix} m(\frac{g}{R} - \Omega^2) & 0\\ 0 & \frac{m\Omega^2(a^2 - b^2)}{12}(\cos^2 \vartheta - \sin^2 \vartheta) \end{pmatrix}$$

mostra che l'unico p.
to stabile è (0,0) (e così pure per simmetria
 $(0,\pi))$. Se invece $\Omega^2>\frac{g}{R}$ allora ci sono pure due nu
ove soluzioni in x. In tal caso (0,0)

diventa instabile. Nel caso $\Omega^2 < \frac{g}{R}$ le fr. di piccola oscillazioni attorno a (0,0) sono:

$$0 = \det \left[\begin{pmatrix} m(\frac{g}{R} - \Omega^2) & 0 \\ 0 & \frac{m\Omega^2(a^2 - b^2)}{12} \end{pmatrix} - \omega^2 \begin{pmatrix} m & 0 \\ 0 & \frac{m}{12}(a^2 + b^2) \end{pmatrix} \right]$$
$$\omega_1 = \sqrt{\frac{g}{R} - \Omega^2}, \quad \omega_2 = \Omega \sqrt{\frac{a^2 - b^2}{a^2 + b^2}}.$$